Задание исходной функции Аппроксимации рядом Тейлора Моделирование физических явлений линейная алгебра матричные операции Пакет статистических расчетов Регрессионный анализ Пакет для студентов Функции интегрирования работа с таблицами

Если необходимо, чтобы команды располагались по одной на строке, а Maple обрабатывал их в рамках единой операции, необходимо после ввода команды вместо нажать клавиши +.

Моделирование цепи на туннельном диоде

А теперь займемся моделированием явно нелинейной цепи. Выполним его для цепи, которая состоит из последовательно включенных источника напряжения Es, резистора Rs, индуктивности L и туннельного диода, имеющего N-образную вольтамперную характеристику (ВАХ). Туннельный диод обладает емкостью С, что имитируется конденсатором С, подключенным параллельно туннельному диоду. Пусть ВАХ реального туннельного диода задана выражением:

> restart:

> A:=.3t: а:=10: В:=1*10^(-8): b:=20:

> Id:=Ud->A*Ud*exp(-a*Ud)+B*(exp(b*Ud-D):

Id:=Ud->AUde(-aUd)+Be(bUd-1)

Построим график ВАХ:

> plot(Id(Ud), Ud=-.02..0.76,color=black): Кинематика материальной точки. Перемещение материальной точки происходит в пространстве и изменяется со временем. Реальное пространство трехмерно, положение любой момент времени полностью определяется тремя числами — ее координатами выбранной системе отсчета. Число независимых величин, задание которых необходимо для однозначного определения положения тела, называется числом его степеней свободы. В качестве системы координат выберем прямоугольную, или декартову, систему координат. Для описания движения точки, кроме координат, еще иметь устройство, с помощью которого можно измерять различные отрезки времени.

Этот график представлен на рис. 17.25. Нетрудно заметить, что ВАХ туннельного диода не только резко нелинейна, но и содержит протяженный участок отрицательной дифференциальной проводимости, на котором ток падает с ростом напряжения. Это является признаком того, что такая цепь способна на переменном токе отдавать энергию во внешнюю цепь и приводить к возникновению колебаний в ней различного типа.

Работа цепи описывается системой из двух дифференциальных уравнений: Расчет сложных трехфазных цепей Сложная трехфазная цепь, например, объединенная энергосистема, может содержать большое число трехфазных генераторов, линий электропередачи, приемников трехфазной энергии. Схема такой цепи представляет собой типичный пример сложной цепи переменного тока. Установившейся режим в такой схеме может быть описан системой алгебраических уравнений с комплексными коэффициентами, составленных по одному из методов расчета сложных цепей (метод законов Кирхгофа, метод контурных токов, метод узловых потенциалов).

di/dt=(Es-i(t)*Rs-u(t))/L 

du/dt=(i(t)-Id(u(t))/C 

Рис. 17.25. ВАХ туннельного диода

Пусть задано Es = 0,35 В, Rs= 15 Ом, С = 10*10-12, L = 30*10-9 и максимальное время моделирования tm=10*10-9. Итак, задаем исходные данные:

> Es:=.35:Rs:=15:C:=10*10^(-12):L:=30*10^(-6):tm:=10*10^(-9):

 Составим систему дифференциальных уравнений цепи и выполним ее решение с помощью функции dsolve:

Поскольку заведомо известно, что схема имеет малые значения L и С, мы задали с помощью параметров достаточно малый шаг решения для функции dsolve — stepsize=l(T(-11) (с). При больших шагах возможна численная неустойчивость решения, искажающая форму колебаний, получаемую при моделировании. Используя функции odeplot и displ ay пакета plots, построим графики решения в виде временных зависимостей u(t) и 10*i (t) и линии, соответствующей напряжению Es источника питания:

> gu:=odeplot(F,[t,u(t)],0,tm,color=black,

labels=['tVu(t),10*i(tr]): 

> gi:=odeplot(F,[t,10*i(t)],0..tm.color-black):

 > ge:=odeplot(F,[t,Es].0..tm.color=red): .

> display(gu.gi,ge);

Эти зависимости представлены на рис. 17.26. Из них хорошо видно, что цепь создает автоколебания релаксационного типа. Их форма сильно отличается от синусоидальной.

Рис. 17.26. Временные зависимости напряжения на туннельном диоде и тока

Решение можно представить также в виде фазового портрета, построенного на фоне построенных ВАХ и линии нагрузки резистора Rs:

> gv:=plot({Id(Ud),(Es-Ud)/Rs},Ud=-.05..0.75,color=black,

labels=[Ud,Id]):

> gpp:=odeplot(F.[u(t),i(t)],0..tm,color=blue): 

> display(gv,gpp);

Фазовый портрет колебаний показан на рис. 17.27.

Рис. 17.27. Фазовый портрет колебаний на фоне ВАХ туннельного диода и линии нагрузки резистора Rs

О том, что колебания релаксационные можно судить по тому, что уже первый цикл колебаний вырождается в замкнутую кривую — предельный цикл, форма которого заметно отличается от эллиптической.

Итак, мы видим, что данная цепь выполняет функцию генератора незатухающих релаксационных колебаний. Хотя поставленная задача моделирования цепи на туннельном диоде успешно решена, в ходе ее решения мы столкнулись с проблемой обеспечения малого шага по времени при решении системы дифференциальных уравнений, описывающих работу цепи. При неудачном выборе шага можно наблюдать явную неустойчивость решения.

В связи с тем, что Maple является интерпретатором, следует четко понимать, что после ввода и выполнения некоторой команды (группы) можно в любой момент времени вернуться на соответствующую строку, после чего по нажатию на команда будет выполнена вновь.
Информатика лекции. Математика примеры решения задач Примеры решения научно-технических задач