Двойной интеграл Интегрирование по прямоугольнику Замена переменных Цилиндрические и сферические координаты Формула Грина Поверхностные интегралы Формула Стокса Формула Остроградского Гаусса Преобразование координат Выражение градиента
Христиан Гюйгенс (1629-1695) был на полтора десятка лет старше Ньютона и Лейбница. Поэтому он не смог соперничать с молодыми коллегами, когда они начали изобретать математический анализ. Однако у Гюйгенса было замечательное чутье в области математической физики: им восхищался даже Ньютон, который никого другого не считал равным себе талантом. Поэтому в математической оптике Гюйгенс сумел превзойти и Ферма, и Ньютона.

Криволинейные интегралы

Условия независимости интеграла второго рода от пути интегрирования.

Определение. Область называется односвязной, если ее граница представляет собой связное множество. Область называется n-связной, если ее граница распадается на n- связных множеств.

Замечание. Формула Грина верна и для многосвязных областей.

До конца этого пункта будем считать, что область D - открытое и односвязное множество, а функции P(x,y), Q(x,y) непрерывны в замыкании D вместе со своими производными , .

Лемма. Для того, чтобы интеграл

  (4)

( A, B – любые точки из D ) не зависел от пути интегрирования ( а только от начальной и конечной точек A, B ) необходимо и достаточно, чтобы по любой замкнутой кривой (по любому контуру) лежащей в D интеграл (4) был равен нулю

=0.

Доказательство (необходимость). Пусть (4) не зависит от пути интегрирования. Рассмотрим произвольный контур C, лежащий в области D и выберем две произвольные точки A, B на этом контуре. Тогда кривую C можно представить, как объединение двух кривых AB=G2 , AB=G1 , C= + G2 .

По условию =, кроме того =, поэтому =+=-=0. Для доказательства достаточности рассмотрим две точки A, B в области D и два пути AB=G2 , AB=G1 соединяющие эти две точки. Рассмотрим контур C= + G2 . По условию =0 , откуда, с учетом соотношения =+=-, следует требуемое равенство =.

Теорема 1. Для того, чтобы криволинейный интеграл (4) не зависел от пути интегрирования в D, необходимо и достаточно чтобы

в области D. (5)

Достаточность. Если (5) выполнено, то формуле Грина для любого контура C будет

=0,

откуда по лемме следует требуемое утверждение.

Необходимость. По лемме для любого контура = 0. Тогда по формуле Грина для области D , ограниченной этим контуром =0. По теореме о среднем 0==mD или ==0. Переходя к пределу, стягивая контур к точке, получим, что в этой точке .

Теорема 2. Для того, чтобы криволинейный интеграл (4) не зависел от пути интегрирования в D, необходимо и достаточно чтобы подинтегральное выражение Pdx+Qdy являлось полным дифференциалом некоторой функции u в области D

du = Pdx+Qdy  (6)

Достаточность. Пусть (6) выполнено, тогда , .

Необходимость. Пусть интеграл не зависит от пути интегрирования. Фиксируем некоторую точку A0 в области D и определим функцию

u(A) = u(x,y)=.

В этом случае

, xÎ[x,x+Dx] (xÎ[x+Dx,x]). Таким образом, существует производная =P. Аналогично, проверяется, что =Q. При сделанных предположениях функция u оказывается непрерывно - дифференцируемой и du = Pdx+Qdy.

Замечание 1. Условие односвязности области D в сформулированных теоремах существенно.

Замечание 2. При доказательстве теоремы 2 была построена функция u(x,y)= . Эта функция определяется с точностью до аддитивной постоянной и называется потенциалом (скалярным) векторного поля (P,Q).

 

  Между тем современники Ньютона постепенно открывали новые законы механики: законы сохранения различных числовых характеристик природных тел в наблюдаемых нами процессах. Так, Валлис открыл закон сохранения импульса, а Лейбниц - закон сохранения кинетической энергии. Гюйгенс вывел дифференциальное уравнение колебаний маятника: в них кинетическая энергия переходит в потенциальную, и обратно.

Пределы Интегралы Вычисление двойного интеграла Изменить порядок интегрирования Объектно-ориентированное программирование Архитектура приложений баз данных Примеры скриптов Высшая математика