Двойной интеграл Интегрирование по прямоугольнику Замена переменных Цилиндрические и сферические координаты Формула Грина Поверхностные интегралы Формула Стокса Формула Остроградского Гаусса Преобразование координат Выражение градиента
Подобно Гюйгенсу и в отличие от Ньютона, Лейбниц был очень разносторонним ученым. Кроме "непрерывной" математики функций и производных, он очень интересовался "дискретной" математикой. Начав с изобретения удачного арифмометра, Лейбниц вскоре заметил особое удобство двоичной системы счисления для математических машин. Он также развил математическую логику, перейдя от словесных рассуждений (силлогизмов) Аристотеля к алгебраическому исчислению логических высказываний.

Кратные интегралы

Замена переменных в тройном интеграле

1.Отображение областей. Криволинейные координаты

Рассмотрим область V в системе координат (x,y,z) и область D в системе координат (x1,x2,x3) .

Кроме того, пусть задано взаимно-однозначное соответствие между этими областями, осуществляемое регулярным отображением ( регулярное – взаимно-однозначное и такое, что прямое и обратное непрерывно дифференцируемы )

  (1)

Будем предполагать, что матрица Якоби отображения (1) не вырождена всюду в области D. Наборы координат (x,y,z) и (x1,x2,x3) удобно интерпретировать следующим образом: каждая точка M из области V определяется, как ее исходными ( в дальнейшем это будут декартовы координаты ) координатами, так и координатами (x1,x2,x3), которые в отличии от исходных координат называются криволинейными координатами. В основе этой терминологии лежит геометрический подход. Так, если в (1) фиксировать две из трех координат x1,x2,x3, то получим линию, которая называется координатной линией. Множество всевозможных линий, полученных фиксированием второй и третьей координат обозначим S1 (параметром линии служит первая координата x1 ). Аналогично определяются еще два семейства линий S2 , S3 . При сделанных предположениях через каждую точку будет проходить ровно по одной линии из этих семейств. Таким образом задание точки однозначно определяется заданием трех линий l1ÎS1, l2ÎS2, l3ÎS3 . Наряду с координатными линиями можно рассматривать координатные поверхности, которые получаются, если в (1) фиксировать одну из координат, а остальные две использовать для параметрического задания поверхности. Свойства функций, непрерывных на отрезке Определение. Если функция f(x) определена на отрезке [a, b], непрерывна в каждой точке интервала (a, b), в точке a непрерывна справа, в точке b непрерывна слева, то говорят, что функция f(x) непрерывна на отрезке [a, b].

 Рассмотрим три координатные линии, проходящие через заданную точку области V

Касательные вектора в точке пересечения этих линий обозначим через

  (2)

Эти вектора образуют базис, так как они не компланарны

.

Для данного базиса единственным образом можно определить базис 1, 2, 3 такой, что (,j)=. Такой базис называется взаимным. Векторы взаимного базиса определяются по формулам

1=,2=,3=. (3)

 

 

 

Определение. Криволинейная система координат (1) называется ортогональной, если в каждой точке области V базис (2) является ортогональным.

В случае ортогональной системы координат формулы (3) упрощаются. Будем предполагать, что тройка  правая. Положим H1=, H2=, H3=, величины H1, H2, H3 называются коэффициентами Ламе. В силу ортогональности ( тройка правая )

= H1 H2 H3 , = H2 H3,= H3 H1,= H1 H2.

Откуда следует, что

*= , = , =.

  Так новая математика Ньютона свела экспериментально обнаруженные законы движения планет и комет к более глубоким законам, которые регулируют силовое взаимодействие любых природных тел. Можно ли свести законы природных сил к еще более глубоким природным закономерностям?

Пределы Интегралы Вычисление двойного интеграла Изменить порядок интегрирования Объектно-ориентированное программирование Архитектура приложений баз данных Примеры скриптов Высшая математика