Первообразная методы интегрирования Формула Ньютона-Лейбница Свойства площади Объем тела вращения Интегрирование по частям Предел функции Свойства пределов Дифференцирование Градиент Старшие производные Формула Тейлора экстремум

В целом, деятельность Ферма (как и деятельность Архимеда) можно сравнить с работой полноценной академии наук. Но увы - при жизни Ферма таких академий еще не было! Не было и научных журналов для публикации новых открытий. Поэтому все крупные ученые Европы узнавали о новых достижениях своих коллег из взаимной переписки. Некоторые любители математики (как аббат Мерсенн в Париже) сделали такую переписку своим главным вкладом в науку.

Вычисление объемов и площадей боковых поверхностей тел вращения

Объем тела вращения

Теорема. Если f(x)³ 0 непрерывна на [a,b] , то тело, полученное вращением графика функции вокруг оси x кубируемо и его объем равен

  Доказательство. Для заданного e рассмотреть достаточное мелкое разбиение D={a=x0<x1<…<xn=b} и два ступенчатых тела на основании сумм Дарбу исходной функции, составленных из круговых цилиндров высотой xk+1 - xk и радиусов mk=, Mk=. Объем этих тел будут равны s(F,D), S(F,D), F(x)=p f 2(x) . Одна из этих кубируемых областей будет вписана в тело вращения, а другая описана. Разность объемов можно сделать сколь угодно малой, что следует из интегрируемости функции F(x).

Справедлива более общая теорема (без доказательства).

Теорема. Если область D проектируется на отрезок [a,b] оси x и любое сечение этой области плоскостью перпендикулярной оси x квадрируемо, а площадь этого сечения S(x) является интегрируемой функцией, то исходная область кубируема и ее объем равен

mD=

(см. рис. 2_11_2.swf)

  Числовые термины, выражающие некоторые из «наиболее абстрактных понятий, какие в состоянии создать человеческий ум», как сказал Адам Смит, медленно входили в употребление. Впервые они появляются скорее как качественные, чем количественные термины, выражая различие лишь между одним (или, вернее, «каким-то» – «какой-то» скорее, чем «один человек»} и двумя и многими.

Пределы Интегралы Вычисление двойного интеграла Изменить порядок интегрирования Объектно-ориентированное программирование Архитектура приложений баз данных Примеры скриптов Высшая математика